Evaluation of METase-pemetrexed-loaded PEG–PLGA nanoparticles modified with anti-CD133–scFV for treatment of gastric carcinoma
نویسندگان
چکیده
PEG-PLGA nanoparticles (NPs) modified with anti-CD133 and tumor-targeting single-chain antibody fragment (scFV-NPs) for systemic delivery of methioninase (METase) and pemetrexed for gastric carcinoma were successfully formulated. The structure characterization and biological functions of METase-pemetrexed-loaded scFV-PEG-PLGA NPs (scFV-METase/pemetrexed-NPs) in vitro were investigated. Functional scFV-PEG-PLGA NPs or PEG-PLGA NPs present low cell cytoxicity in CD133+ SGC7901 cells. scFV-METase/pemetrexed-NPs (scFv-M/P-NP) was more effective in inhibiting tumor growth (including cell growth and migration ability) in CD133 positive expressed gastric cancer cells than METase/pemetrexed-NPs (M/P-NP). Moreover, METase enhanced the inhibitory effect of pemetrexed on thymidylate synthase (TS) synthesis and cell apoptosis. We have demonstrated the application of scFV-targeted PEG-PLGA NPs as a new potential strategy to enhance treatment benefits for gastric carcinoma.
منابع مشابه
Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کاملPreparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
متن کاملDocetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect
In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...
متن کاملDocetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect
In this study a 3-factor, 3-level Box-Behnken design was used to prepare optimized docetaxel (DTX) loaded pegylated poly lactide-co-glycolide (PEG-PLGA) NPs with polymer concentration (X1), drug concentration (X2) and ratio of the organic to aqueous solvent (X3) as the independent variables and particle size (Y1), poly dispersity index (PDI) (Y2) and drug loading (Y3) as the responses. The cyto...
متن کاملEffects of Chrysin-PLGA-PEG Nanoparticles on Proliferation and Gene Expression of miRNAs in Gastric Cancer Cell Line
BACKGROUND Recently, Chrysin, as a flavone, has revealed cancer chemo-preventive activity. The present experiment utilized the PLGA-PEG-chrysin complex, and free chrysin, to evaluation of the expression of miR-22, miR-34a and miR-126 in human gastric cell line. OBJECTIVES The purpose of this study was to examine whether nano encapsulating chrysin improves the anti-cancer effect of free chrysi...
متن کامل